Motion Primitives for Robotic Flight Control
نویسندگان
چکیده
We introduce a simple framework for learning aggressive maneuvers in flight control of UAVs. Having inspired from biological environment, dynamic movement primitives are analyzed and extended using nonlinear contraction theory. Accordingly, primitives of an observed movement are stably combined and concatenated. We demonstrate our results experimentally on the Quanser Helicopter, in which we first imitate aggressive maneuvers and then use them as primitives to achieve new maneuvers that can fly over an obstacle.
منابع مشابه
Motion Primitives for an Autorotating Helicopter
In this paper, we introduce a design criterion for motion primitives of a helicopter when engine failure occurs. A flight plan followed by such a helicopter after it has established autorotation consists of concatenation of such well-defined motion primitives. A library of primitives act as an useful finite action space for a motion planner to search over. Subject to the constrained flight dyna...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملAutomatic formulation of falling multiple flexible-link robotic manipulators using 3×3 rotational matrices
In this paper, the effect of normal impact on the mathematical modeling of flexible multiple links is investigated. The response of such a system can be fully determined by two distinct solution procedures. Highly nonlinear differential equations are exploited to model the falling phase of the system prior to normal impact; and algebraic equations are used to model the normal collision of this ...
متن کاملHuman-inspired motion primitives and transitions for bipedal robotic locomotion in diverse terrain
In this paper, a control design approach is presented, which uses human data in the development of bipedal robotic control techniques for multiple locomotion behaviors. Insight into the fundamental behaviors of human locomotion is obtained through the examination of experimental human data for walking on flat ground, upstairs, and downstairs. Specifically, it is shown that certain outputs of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0609140 شماره
صفحات -
تاریخ انتشار 2006